(WEB 講座 36)

高強度せん断補強筋を用いたフック付き重ね継手を有する RC 基礎梁のせん断性状

1. はじめに

RC 基礎梁の場合,通常,断面寸法が大きく,施工上,基礎梁せ い中間部でコンクリートを打継ぎ,せん断補強筋を中間部で重ね継 手とすることが多い。RC 配筋指針¹⁾によると,図1に示すように, SD490 以下のせん断補強筋の場合には,基礎梁せい中間部にフック 付き重ね長さL1h以上の重ね継手を配置できる。

上記のフック付き重ね長さは、基礎梁実験によらず、施工上の必要性から工学的判断に基づき規定されたと考えられる。一方、SD490 を超える高強度せん断補強筋の場合、RC 配筋指針の適用範囲外であ るので、通常、基礎梁せい中間部にはフック付き重ね継手を配置で きない。これらより、本資料では、高強度せん断補強筋の鋼種 (685N/mm²級、785N/mm²級)およびせん断補強筋比を実験因子とし、 フック付き重ね継手を有し、打継ぎ部を設けない RC 基礎梁のせん断 性状を確認する。

図1 基礎梁せん断補強筋のフック付き重ね継手¹⁾

2. 実験計画

2.1 試験体および実験因子

試験体は、図2に示すように、剛強な中央部(反力部、図3参照) の左右に2体ずつ配置し、それぞれせん断スパン比a/D=1.125、基 礎梁断面寸法250mm×1000mm、上下主筋3+2-D25(SD390)、重ね継手 末端は135°フック、重ね継手位置は基礎梁せいの中央とした。

本実験は,表1に示すように,系列1と系列2からなり,系列1 では,せん断補強筋鋼種(685N/mm²級,785N/mm²級)と重ね長さ*1*,系 列2では,せん断補強筋鋼種を685N/mm²級とし,せん断補強筋比pw と重ね長さ*1*を実験因子とした。いずれもコンクリートの目標圧縮 強度は24 N/mm²であり,試験体数は各8体,計16体である。

両系列ともに,試験体記号に∞を付した試験体は,重ね継手なし 試験体であり,重ね継手あり試験体の重ね長さ1は,RC配筋指針¹⁾ に 準じて計算した必要重ね長さ比1/dの値を基に設定した(6章 参照)。 dはせん断補強筋の呼び名の値を示す。

系列 1 の場合, せん断補強筋は 2-D10@250mm(pw=0.23%)であり, 荒川 mean 式のせん断余裕度 Qsu/Qfu は 0.8 程度である。また, 系列 2 の場合, せん断補強筋は 2-D10@250mm(pw=0.23%)および 2-D10@ 125mm(pw=0.45%)であり, Qsu/Qfu は 0.8 程度および 1.0 程度である。 Qsu は荒川 mean 式のせん断終局耐力³⁾, Qfu は平面保持仮定による曲 げ終局耐力時せん断力を示す(5 章 参照)。

表1 実験計画

	系列1			系列2			
学家年	せん断補強筋		*******	せん断補強筋			
武职性	鋼種	重ね長さ	武映14	pw(%)	重ね長さ		
FG785-∞	785 N/mm ² 級	-*	FG-0.23-∞		-*		
FG785-55		55d	FG-0.23-50	0.99	50d		
FG785-50		50d	FG-0.23-45	0.23	45d		
FG785-45		45d	FG-0.23-40		40d		
$FG685-\infty$	685	-*	FG-0.45-∞		-*		
FG685-50	685 N/mm ² 級	50d	FG-0.45-50	0.45	50d		
FG685-45		45d	FG-0.45-45	0.45	45d		
FG685-40		40d	FG-0. 45-40		40d		

※:重ね継ぎなし、d:せん断補強筋呼び名の値 pw=aw/(bx):せん断補強筋比,b:梁幅,x:せん断補強筋間隔 【せん断補強筋鋼種】(系列1)785N/mm²級:KH785,685N/mm²級:KH685 (系列2) いずれも685N/mm2級:SPR685

糸列1, 糸列2ともに, コンクリートの目標圧縮強度24N/m	mm'
---------------------------------	-----

表 2 材料試験結果 (a) コンクリート

	試験体	σB (N/mm ²)	ε co (×10 ⁻³)	Ec (kN/mm ²)	σ t (N/mm ²)
系列1	FG785	29.8	2.11	24.5	2.85
	FG685	27.7	2.04	24.9	2.68
系列2	FG-0.23	31.2	2.06	26.5	2.82
	FG-0.45	34.0	2.15	28.7	3.17

 σ_B :実圧縮強度(各3本の平均値) $\epsilon_{co}: \sigma_B時ひずみ, E_c: ヤング係数, \sigma_t:割裂強度$

0	- /	,	ЦC	•	`	~		N
			(L)		64 -	标	

(b) 武肋							
使用部位	鋼	種	呼び 名	σ_y (N/mm ²)	σu (N/mm ²)	伸び (%)	
甘淋洌之故	50200	系列1	D25	440	615	22	
基键架土肋	20330	系列2		432	609	28	
せん断 補強筋	785N級	系列1	D10	827	1028	15	
	685N級	系列2	D10	784	936	17	
	685N級	系列2	D10	715	868	17	
αν・降伏点 αν・引張強さ							

(エレビス)、1011、1012(1)
 (エレビス)、1011、1012(1)
 (エレビス)、1012(1)
 (エレビス

系列 1, 系列 2 のせん断補強筋は大臣認定取得の高強度せん断補 強筋(KH785, KH685, SPR685)であり,それぞれ JIS G 3112の規格に近 い節形状寸法を有する。材料試験結果を表 2 に示す。

2.2 実験方法

本実験では、図3に示すように、試験体中央の反力部左右の供試 部1,2に、それぞれ油圧ジャッキを用いて加力した。載荷履歴は、 目標部材角R=(5,10,20)×10⁻³rad.で1サイクルずつの正負繰返し載 荷後、正加力方向への単調載荷とし、上端筋引張時を正加力方向と した。部材角は、加力位置のたわみ量 δ をせん断スパン長(1250mm) で除した値とした。

図3 実験装置

ー方,図3に示すように,載荷前に中央部(反力部)の両端に配置 した反力受けビームをPC鋼棒(1台当たり4本-32¢,計2000kN)で 締め付け,鉛直加力用油圧ジャッキの両端をピン支持とすることで, 供試部を水平方向に拘束しないようにした。

実験結果および考察

3.1 各試験体の荷重-変形性状および破壊形式

代表的試験体のせん断力 Qg-部材角 R 関係を図 4, ひび割れ状況 を写真1に示す。図4中には、最大耐力 Qmax, 限界部材角 Rso およ び主な発生現象を示した。Rso は最大耐力 Qmax の 80%耐力低下時の限 界部材角実験値である。図4に示すように、

系列1 試験体では、いずれも R=5~6×10⁻³rad. 時に基礎梁主筋が 引張降伏(BTY)し、R=7~10×10⁻³rad. 時に最大耐力に達した後、材 端部曲げ圧縮部に向かうせん断ひび割れ幅が急増した(写真 1(a) 参照)。最大耐力後、FG685-∞を除く試験体では、基礎梁主筋の塑性 ひずみが進展し、FG685-∞の基礎梁主筋は R=6.0×10⁻³rad. 時に降伏 ひずみに達したが、その後ほとんど進展しなかった。

上記のひずみ性状の違いは、せん断ひび割れの進展状況の差異に 起因すると考えられる。すなわち、FG685-∞のせん断ひび割れは、 重ね継手なしせん断補強筋のため対角線状に発生し、FG685-∞以外 の重ね継手ありせん断ひび割れは、2本のせん断補強筋の重ね継手 部を避けた部分に発生した。

pw=0.45%の系列2試験体では,R=5.0~5.5×10⁻³rad.時に基礎梁主 筋が引張降伏(BTY)し,R=10~20×10⁻³rad.時に最大耐力に達した後, 基礎梁主筋の塑性ひずみが進展し,これに伴い,材端部曲げ圧縮部 に向かうせん断ひび割れ幅が急増した(写真1(b)参照)。

3.2 実験因子別の正加力時基準化梁せん断力 Qg/Qfu-部材角 R 関係

表記の Qg/Qfu-部材角 R 関係を図 5 に示す。Qfu は平面保持仮定 による曲げ終局耐力時せん断力である。同図によると、

- 系列1の785N/mm²級せん断補強筋を用いた試験体では、いずれ も主筋が引張降伏(BTY)し、せん断補強筋が引張降伏(HTY)する とともに、R=10×10⁻³rad.程度以降、ほぼ一定耐力を保持し、R= 20×10⁻³rad.程度より耐力低下を起こした。重ね継手あり試験体 の耐力低下度合いは、重ね継手なし試験体よりも大きいが、重 ね長さによる有意差は認められない。
- 2) 系列 1 の 685N/mm² 級せん断補強筋を用いた試験体は,R=10×10⁻³rad.程度まで同様に挙動したが,それ以降,耐力低下を起こした。重ね継手あり試験体の耐力低下度合いは,重ね継手なし試験体よりも小さく,重ね長さによる有意差は認められない。 重ね継手なしとありの耐力低下度合いの違いは,3.1節で前述したように,両者のせん断ひび割れの進展状況の差異に起因すると考えられる。
- 3) 系列 2 の pw=0.23%の場合,系列 1 と同様,重ね長さによる有意 差は認められない。
- 4) 系列2のpw=0.45%の場合,主筋引張降伏(BTY)後, R=10×10⁻³rad. 程度以降,ほぼ一定耐力を保持し,R=20×10⁻³rad.程度より耐力 低下を起こした。重ね継手あり試験体の耐力低下度合いは,重 ね継手なし試験体よりも大きいが,重ね長さによる有意差は認 められない。また,せん断補強筋の引張降伏(HTY)は,FG-0.45-50

3.3 最大せん断ひび割れ幅の推移

最大せん断ひび割れ幅 wsの推移を図6に示す。最大せん断ひび割 れ幅 wsは、測定段階ごとに、クラックスケールを用いて6箇所程度 で測定した値の最大値(写真1参照)であり、同図中には、損傷短期 許容せん断力時の最大せん断ひび割れ幅 ws を●▲■◆で示した(4 章 参照)。同図によると、

- 1) 系列1 試験体の場合,785N/mm²級,685N/mm²級せん断補強筋と もに、せん断ひび割れは R=0.7~1.2×10⁻³rad. 程度で発生した 後急増し,主筋引張降伏(BTY)が発生した R=5~6×10⁻³rad. 程度 より,最大せん断ひび割れ幅 wsの増加割合がやや小さくなった。
- 2) 系列2のpw=0.23%試験体のwsは,系列1試験体と同様に推移し, pw=0.45%試験体の ws は, pw=0.23%試験体よりも明らかに小さい。

3.4 せん断補強筋ひずみの推移

本実験では、図7に示したせん断補強筋 Hi のひずみを測定した。 系列1のせん断補強筋ひずみ ϵ Hi の推移を図8に示す。同図による と、785N/mm² 級および 685N/mm² 級の ϵ Hi は、重ね継手の有無、重ね 長さに係わらず同様に推移し、スパン中央に近いせん断補強筋ひず み ϵ H2、 ϵ H3 が大きくなる傾向があった。

次に、せん断補強筋の最大ひずみ ϵ Hmax の推移を図9に示す。同 図によると、系列1の ϵ Hmax は、概ね、R=20×10⁻³rad. 時に降伏ひず みに達した。系列2の ϵ Hmax は、概ね、pw=0.23%の場合、重ね継手 なしのFG-0.23-∞ではR=5×10⁻³rad. 時、重ね継手あり試験体では R=10×10⁻³rad. 時に降伏ひずみに達した。また、pw=0.45%の場合、概 ね、R=20×10⁻³rad. 時に降伏ひずみに達した。

以上によると, 3.2節で前述したように,梁主筋引張降伏後に発 生した耐力低下は, せん断ひび割れ幅の進展に伴い生じたせん断補 強筋の引張降伏(HTY)に起因したと考えられる。

4. 損傷短期許容せん断力時の最大せん断ひび割れ幅

4.1 検討方法

本検討では、文献4)提案の損傷制御短期許容せん断力(以下、損 傷短期許容せん断力と略記)に準じ、下式で求めた本実験の基礎梁試 験体と純ラーメン架構を対象とした一般梁試験体⁵⁾の損傷短期許容 せん断力時最大せん断ひび割れ幅の実験値を比較、検討する。

QAS=b·j{ β c· α ·fs+0. bwft·(pw-0.001)}	(1)
β c=1-(100pw-0. 2)/3	(2)
$\alpha = 4/(M/Qd+1)$ かつ $1 \le \alpha \le 2$	
5:梁幅, j:応力中心距離, d:有効せい	
fs:コンクリートの短期許容せん断応力度	
ft: せん断補強筋の短期許容引張応力度	
685N/mm ² 級, 785N/mm ² 級ともに, wft=590N/mm ²	
w: せん断補強筋比, βc: せん断補強筋比 pwの影響係数	

α: せん断スパン比 M/Qd の割増し係数

4.2 検討結果

基礎梁試験体(16体)および一般梁試験体(58体)⁵⁾の損傷短期許容 せん断力時最大せん断ひび割れ幅実験値(ws)AS-せん断補強筋比 pw 関係を図 10に示す。(ws)AS は文献 4)提案の算定方法で求めた。

同図によると、基礎梁試験体の(ws)ASは、一般梁試験体よりも大きく、一般梁試験体の上限値(0.4mm)を超える場合が多い。すなわち、基礎梁試験体のせん断スパン比 a/D が一般梁試験体よりも小さくなるか、または梁せい/梁幅比が大きくなると、(ws)AS は増加すると考えられる。

5. 終局耐力の検討

基礎梁試験体(16体)および一般梁試験体(58体)5)の耐力安全率 Qmax/Qfu-せん断余裕度 Qsu/Qfu 関係を図 11 に示す。Qsu は荒川 mean 式のせん断終局耐力,Qfuは平面保持仮定による曲げ終局耐力時せん 断力であり、同図中には、一般梁試験体のせん断破壊型(Qsu/Qfu<1) の回帰勾配(1.27)を示した。計算耐力は材料試験結果の実強度を用 いて算定した。同図によると、基礎梁試験体の Qmax/Qfu は、一般梁 試験体の範囲に概ね入る。

6. フック付き重ね継手の必要重ね長さの検討

RC 計算規準 16 条 2)では、フック付き重ね継手の場合、フックが 鉄筋引張力の1/3を負担し、重ね継手部が鉄筋引張力の2/3を負担 するとしている。これらより, RC 配筋指針¹⁾では,式(3)と式(4)の 大きい方の計算値を基に、SD295~SD490のせん断補強筋のフック付 き重ね長さ比Lih/dを表3で規定している。

$l \ge (2/3) \cdot \{ \sigma_t \cdot d/ (4f_a) \}$	(3)
$l \ge (2/3) \cdot \{ \sigma_{t} \cdot d/(4K \cdot f_{b}) \}$	(4)

1: フック付き重ね長さ, d: 鉄筋呼び名の値

σt: 短期許容引張応力度, fa: 短期許容付着応力度(上端筋の値)

fb:付着割裂の基準となる強度

K:鉄筋配置とせん断補強筋による修正係数(K=1.9とする)

重ね継手なしとフック付き重ね継手あり試験体の限界部材角実 験値 Rso に及ぼす影響を図 12 に示す。Rso は、最大耐力 Qmax の 80% 耐力低下時の限界部材角実験値(図4参照)であり,faおよびfbは, 表 2(a)のコンクリートの実圧縮強度 σ B を用いて求めた。

図 12 によると, 系列 1, 系列 2 ともに, フック付き重ね継手あり 試験体の限界部材角実験値 Rso については、重ね継手長さに係わら ず,重ね継手なし試験体との有意差は認められない。これらより, 表 3 では, SD295~SD490 と同様, コンクリートの設計基準強度 Fc を用いて求めた 685N/mm² 級および 785N/mm² 級せん断補強筋のフッ ク付き重ね長さ比 I/d の計算値を示すとともに、これらの計算値を 安全側にまるめたフック付き重ね長さ比の設計値を示した。

7. まとめ

本資料では、高強度せん断補強筋を用いたフック付き重ね継手を 有する RC 基礎梁の実験を行い、以下の知見を得た。

- 1) 本実験の基礎梁試験体は、R=5~6×10⁻³rad.時に基礎梁主筋が引 張降伏(BTY)した後, R=10~20×10⁻³rad. 時に耐力低下を起こした。 これは、せん断ひび割れ幅の進展に伴い生じたせん断補強筋の引 張降伏(HTY)に起因したと考えられる。
- 2) 基礎梁試験体の損傷短期許容せん断力時最大せん断ひび割れ幅 実験値(ws)ASは、一般梁試験体よりも大きく、一般梁試験体の上

限値(0.4mm)を超える場合が多い。すなわち、基礎梁試験体のせ ん断スパン比a/Dが一般梁試験体よりも小さくなるか,または梁 せい/梁幅比が大きくなると、(ws)ASは増加すると考えられる。

- 3) 基礎梁試験体の荒川mean式による耐力安全率Qmax/Qfuは,一般梁 試験体の範囲に概ね入る。
- 4) SD295~SD490と同様, コンクリートの設計基準強度Fcを用いて求 めたフック付き重ね長さ比I/dの計算値を安全側にまるめると, 685N/mm²級および785N/mm²級せん断補強筋のフック付き重ね長さ 比の設計値が得られる。

高強度せん断補強筋のフック付き重ね長さ比

図 12 Rso に及ぼすフック付き重ね長さ比 l/d の影響

Fc		L11	h/d		<i>l</i> /d		設計値									
(N/mm^2)	SD295	SD345	SD390	SD490	685N級	785N級	685N級	785N級								
21	30				54.4	62.3	_									
24		30	35	40	50.1	57.4										
27				40	47.7	54.7	50	55								
30	25				45.5	52.2	50	55								
33					43.5	49.9										
36		0.5	20	0.5	41.7	47.8	45	50								
39		20	30	30	40.1	45.9										
42													38.5	44.1		
45	20								37.1	42.5						
48	20			25 30	35.8	41.0	40	45								
54		20	25		33.4	38.3										
60							31.3	35.9								

Fc:コンクリートの設計基準強度, SD295~SD490のL1h/dはRC配筋指針 による。

参考文献

表 3

- 日本建築学会・鉄筋コンクリート造配筋指針・同解説 2010 1)
- 日本建築学会:鉄筋コンクリート構造計算規準・同解説、2010 2)
- 国土交通省国土技術政策総合研究所、国立研究開発法人建築研究所監 3) 修:2015 年度版 建築物の構造関係技術基準解説書2015
- 市岡有香子,田川浩之,足立将人,益尾潔:SD295~785N/mm²級横補強筋 4) を用いた RC 梁の残留せん断ひび割れ幅制限値に基づく短期許容せん断 力,日本建築学会構造系論文集,No.662, pp.821-828, 2011.4
- 林哲平,小寺耕一朗,益尾潔:SD490 および 785N/mm²級横補強筋を用い 5) た RC 梁の構造性能, 日本建築学会大会学術講演梗概集, 構造IV, pp. 457-458, 2015.9
- 6) 益尾潔:785N/mm²級および 685N/mm²級高強度せん断補強筋を用いたフッ ク付き重ね継手を有する RC 基礎梁のせん断性状, 日本建築学会大会学術 講演梗概集,構造Ⅳ, pp. 455-456, 2015.9

(注記)

本実験は、岸和田金属(株)および東京鉄鋼(株)による高強度せん 断補強筋の開発実験として(一財)日本建築総合試験所で行われた。